Power Law Gels at Finite Strains

نویسندگان

  • Trevor S. K. Ng
  • Gareth H. McKinley
چکیده

SYNOPSIS Many complex fluids exhibit power-law responses in their relaxation modulus; examples include foods, soft solids, fractal gels and other polydisperse systems. In the present study we investigate the rheological characteristics of such materials beyond the linear regime using a gluten-water gel as a prototypical system. The material functions of gluten dough under finite strains can be described by combining the linear viscoelastic response of a critical gel (Chambon and Winter 1987) with a Lodge rubber-like network to develop a frame invariant constitutive equation (Winter and Mours 1997). This generalized gel equation is a simple but accurate description of the material functions in the linear regime and also at large strains, using only two parameters. We compare the model predictions with experimental measurements in transient shear and elongational flows of gluten gels over a wide range of deformation rates. An essential feature of both the experimental data and the generalized gel model is a strain/rate separability in the system response. Further modifications to the generalized gel equation can be made by incorporating a damping function to include non-linear strain softening effects seen in more complex gels such as wheat flour doughs. From the rheological data, we find compelling evidence that indicates gluten to be a polymeric network consisting of flexible or semi-flexible chains between junction points and has a typical mesh size of approximately 20 nm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Analytical Solution for Free Vibration Analysis of Thick Laminated Curved Panels with Power-Law Distribution FG Layers and Finite Length Via Two-Dimensional GDQ Method

This paper deals with free vibration analysis of thick Laminated curved panels with finite length, based on the three-dimensional elasticity theory. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary conditions including Fre...

متن کامل

Buckling Behaviors of Symmetric and Antisymmetric Functionally Graded Beams

The present study investigates buckling characteristics of both nonlinear symmetric power and sigmoid functionally graded (FG) beams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by the sigmoid-law distribution (S-FGM), and the symmetric power function (SP-FGM). These functions have smooth variation of properties across the boundary rather tha...

متن کامل

Theoretical Formulations for Finite Element Models of Functionally Graded Beams with Piezoelectric Layers

In this paper an overview of functionally graded materials and constitutive relations of electro elasticity for three-dimensional deformable  solids is presented, and  governing equations of the Bernoulli–Euler and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material and piezoelectric layers are developed  using the  principle  of virtua...

متن کامل

Free Vibration Analysis of Nanoplates Made of Functionally Graded Materials Based On Nonlocal Elasticity Theory Using Finite Element Method

In this paper, an analysis of free vibration in functionally graded nanoplate is presented. Third-order shear deformation plate theory is used to reach more accuracy in results. Small-scale effects are investigated using Eringen`s nonlocal theory. The governing equations of motion are obtained by Hamilton`s principle. It is assumed that the properties of nanoplates vary through their thicknesse...

متن کامل

Large amplitude oscillatory shear flow of gluten dough: A model power-law gel

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. SYNOPSIS In a previous paper [Ng and McKinley (2008)], we demonstrated that gluten gels can best be understood as a polymeric network with a power-law frequency response that reflects the fractal structure of the gluten network. Large deformation tests in both transient shear a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007